

Brunifierning av Sveriges vattendrag – klimat och andra påverkansfaktorer

Kevin Bishop, Karin Eklöf, Jens Fölster, Julia Hytteborn

TOC mg L-1 0-101990 Forest Headwaters Soares, 2013

Miljöövervakning har koll sedan 1970s

TOC, median (mg/l)

- **1.1 7.1**
- 7.2 10.2
- **10.3 13.4**
- 13.5 23.6

SLU

COD 1970-2005

28 vattendrag

Erlandsson et al., (2007) Global Change Biology

Future Climate:

0 % < ΔTOC < 20 % 20% < ΔTOC < 40 %

25% increase in runoff will give 6% higher DOC concentrations

Erlandsson et al., (2007) Global Change Biology

215 Water courses now monitored What do they say about trends and drivers?

area 0.18 - 47,000 km²

Same model fitted to each watercourse

Discharge Trend $TOC = e^{a_0} \cdot Q^{a_1} \cdot e^{A \cdot \sin(2\pi \cdot dtime + c)} \cdot e^{a_4 dtime}$

Constant (mean TOC)

Seasonality (Temperature)

Hytteborn et al., (2015) Sci. Tot. Env.

Influence on the TOC concentration

What controls the control of Flow, Season and Trend?

- Model correlations with map info didn't explain much (~0.2r²)
- No correlation with the trend coefficient
- Flow and Seasonality understandable

Evaluation data:

- Spatial data (area, elevation etc)
- Precipitation and Temperature
- Land use, Soil type and kNN data
- Water residence time in upstream lakes

Hytteborn et al., (2015) Sci. Tot. Env.

Seasonality?:

Swedish stream carbon is modern (much C-fixed during growing season)

atmospheric ¹⁴C-CO₂

Campeau et al., (in review)

What does the future hold??

- Temperature and Discharge predictable
- Use two climate predictions (Hadley and Eacham) with IPCC Scenario of emissions
- Trend? Assume that DOC increase stopped in 2010

Evaluation data:

- Spatial data (area, elevation etc)
- Precipitation and Temperature
- Land use, Soil type and kNN data
- Water residence time in upstream lakes

Hytteborn et al., (2015) Sci. Tot. Env.

TOC concentration 2071-2100 (change relative to 2000)

TOC load 2071-2100 (change relative to 2000)

IPCC A1b Scenario

Hytteborn et al., (2015) PhD Thesis

What did the future hold? ...since 2010 Recovery from acidification slowing...

Increasing TOC % of watercourses

1990-2010: 74%

2010-2017: 17%

Eklöf et al., (2018) SLU Report to Swedish EPA

ökande respektive minskande trend av TOC

Eklöf et al., (2018) SLU Report to Swedish EPA Generalized Additive Modeling (GAM) by C. von Brömssen

What did the future hold? (since 2010) predictions 2011-2017 with no linear trend

Statistical model performance (median NSE)

1990-2010: 0.44

2010-2017: 0.34

Eklöf et al., (2018) SLU Report to Swedish EPA

What can the past tell us?

Pre-Industrial TOC often higher (drainage, acidification...)

The lake sediment record

Meyer-Jacob et al. 2015 "PNAS6

"Historical TOC concentration minima during peak sulfur deposition" *Bragée et al. 2015*

Brunifierning av Sveriges vattendrag – klimat och andra påverkansfaktorer

- Climate itself not likely to push median DOC much higher
- DOC increases have leveled off across much of Sweden.
- Increases continue in south and northeast
- Acidification recovery part of the story but not the whole story
- Decades of observations answer many questions
- Observations of land use change effects will answer more questions! (continued monitoring and more sediment records)
- Use interventions (forest management shifts, wetland restoration) as learning opportunites!

